Abstract: Heart transplantation is a difficult procedure compared with other surgical operations, with a greater outcome uncertainty such as late rejection and death. We can model the success of heart transplants from predicting factors such as the age, sex, diagnosis, etc., of the donor and recipient. Although predictions can mitigate the uncertainty on the transplantation outcome, their accuracy is far from perfect. In this paper, we describe a new method to predict the outcome of a transplantation from textual operative reports instead of traditional tabular data. We carried out an experiment on 300 surgical reports to determine the survival rates at one year and five years. Using a truncated TF-IDF vectorization of the texts and logistic regression, we could reach a macro Fl of 59.1 %, respectively, 54.9% with a five-fold cross validation. While the size of the corpus is relatively small, our experiments show that the operative textual sources can discriminate the transplantation outcomes and could be a valuable additional input to existing prediction systems. Clinical Relevance- Heart transplantation involves a significant number of written reports including in the preoperative examinations and operative documentation. In this paper, we show that these written reports can predict the outcome of the transplantation at one and five years with macro 1s of 59.1 % and 54.9 %, respectively and complement existing prediction methods.
0 Replies
Loading