Beyond Bounding-Box: Convex-Hull Feature Adaptation for Oriented and Densely Packed Object DetectionDownload PDFOpen Website

2021 (modified: 26 Nov 2022)CVPR 2021Readers: Everyone
Abstract: Detecting oriented and densely packed objects remains challenging for spatial feature aliasing caused by the intersection of reception fields between objects. In this paper, we propose a convex-hull feature adaptation (CFA) approach for configuring convolutional features in accordance with oriented and densely packed object layouts. CFA is rooted in convex-hull feature representation, which defines a set of dynamically predicted feature points guided by the convex intersection over union (CIoU) to bound the extent of objects. CFA pursues optimal feature assignment by constructing convex-hull sets and dynamically splitting positive or negative convex-hulls. By simultaneously considering overlapping convex-hulls and objects and penalizing convex-hulls shared by multiple objects, CFA alleviates spatial feature aliasing towards optimal feature adaptation. Experiments on DOTA and SKU110K-R datasets show that CFA significantly outperforms the baseline approach, achieving new state-of-the-art detection performance.
0 Replies

Loading