Keywords: Anomaly Detection, Normalizing Flow, Auto-encoder.
TL;DR: We propose a normalizing flow based autoencoder for medical anomaly detection and it outperformed the other approaches by a large margin.
Abstract: Anomaly detection from medical images is an important task for clinical screening and diagnosis. In general, a large dataset of normal images are available while only few abnormal images can be collected in clinical practice. By mimicking the diagnosis process of radiologists, we attempt to tackle this problem by learning a tractable distribution of normal images and identify anomalies by differentiating the original image and the reconstructed normal image. More specifically, we propose a normalizing flow-based autoencoder for an efficient and tractable representation of normal medical images. The anomaly score consists of the likelihood originated from the normalizing flow and the reconstruction error of the autoencoder, which allows to identify the abnormality and provide an interpretability at both image and pixel levels. Experimental evaluation on two medical images datasets showed that the proposed model outperformed the other approaches by a large margin, which validated the effectiveness and robustness of the proposed method.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
12 Replies
Loading