Keywords: algorithmic game theory, Nash equilibrium, minmax optimization
Abstract: Adversarial multiplayer games are an important object of study in multiagent learning. In particular, polymatrix zero-sum games are a multiplayer setting where Nash equilibria are known to be efficiently computable. Towards understanding the limits of tractability in polymatrix games, we study the computation of Nash equilibria in such games where each pair of players plays either a zero-sum or a coordination game. We are particularly interested in the setting where players can be grouped into a small number of teams of identical interest. While the three-team version of the problem is known to be PPAD-complete, the complexity for two teams has remained open. Our main contribution is to prove that the two-team version remains hard, namely it is CLS-hard. Furthermore, we show that this lower bound is tight for the setting where one of the teams consists of multiple independent adversaries. On the way to obtaining our main result, we prove hardness of finding any stationary point in the simplest type of non-convex-concave min-max constrained optimization problem, namely for a class of bilinear polynomial objective functions.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7295
Loading