OSDA Agent: Leveraging Large Language Models for De Novo Design of Organic Structure Directing Agents

Published: 22 Jan 2025, Last Modified: 28 Feb 2025ICLR 2025 SpotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Keywords: Large Language Model, OSDA, Zeolite, Molecular Design
Abstract: Zeolites are crystalline porous materials that have been widely utilized in petrochemical industries as well as sustainable chemistry areas. Synthesis of zeolites often requires small molecules termed Organic Structure Directing Agents (OSDAs), which are critical in forming the porous structure. Molecule generation models can aid the design of OSDAs, but they are limited by single functionality and lack of interactivity. Meanwhile, large language models (LLMs) such as GPT-4, as general-purpose artificial intelligence systems, excel in instruction comprehension, logical reasoning, and interactive communication. However, LLMs lack in-depth chemistry knowledge and first-principle computation capabilities, resulting in uncontrollable outcomes even after fine-tuning. In this paper, we propose OSDA Agent, an interactive OSDA design framework that leverages LLMs as the brain, coupled with computational chemistry tools. The OSDA Agent consists of three main components: the Actor, responsible for generating potential OSDA structures; the Evaluator, which assesses and scores the generated OSDAs using computational chemistry tools; and the Self-reflector, which produces reflective summaries based on the Evaluator's feedback to refine the Actor's subsequent outputs. Experiments on representative zeolite frameworks show the generation-evaluation-reflection-refinement workflow can perform de novo design of OSDAs with superior generation quality than the pure LLM model, generating candidates consistent with experimentally validated OSDAs and optimizing known OSDAs.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3544
Loading