Disentanglement with Biological Constraints: A Theory of Functional Cell TypesDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Mar 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: Disentangling, neurosciece, representation learning, hippocampus, cortex
Abstract: Neurons in the brain are often finely tuned for specific task variables. Moreover, such disentangled representations are highly sought after in machine learning. Here we mathematically prove that simple biological constraints on neurons, namely nonnegativity and energy efficiency in both activity and weights, promote such sought after disentangled representations by enforcing neurons to become selective for single factors of task variation. We demonstrate these constraints lead to disentanglement in a variety of tasks and architectures, including variational autoencoders. We also use this theory to explain why the brain partitions its cells into distinct cell types such as grid and object-vector cells, and also explain when the brain instead entangles representations in response to entangled task factors. Overall, this work provides a mathematical understanding of why single neurons in the brain often represent single human-interpretable factors, and steps towards an understanding task structure shapes the structure of brain representation.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Neuroscience and Cognitive Science (e.g., neural coding, brain-computer interfaces)
TL;DR: We prove biological constraints of nonnegativity and energy efficiency lead to disentanged representations, and empirically demonstrate this in machine learning and neuroscience tasks.
Supplementary Material: zip
23 Replies

Loading