Nearly Optimal Clustering Risk Bounds for Kernel K-MeansDownload PDFOpen Website

Published: 01 Jan 2020, Last Modified: 20 Nov 2023CoRR 2020Readers: Everyone
Abstract: In this paper, we study the statistical properties of kernel $k$-means and obtain a nearly optimal excess clustering risk bound, substantially improving the state-of-art bounds in the existing clustering risk analyses. We further analyze the statistical effect of computational approximations of the Nystr\"{o}m kernel $k$-means, and prove that it achieves the same statistical accuracy as the exact kernel $k$-means considering only $\Omega(\sqrt{nk})$ Nystr\"{o}m landmark points. To the best of our knowledge, such sharp excess clustering risk bounds for kernel (or approximate kernel) $k$-means have never been proposed before.
0 Replies

Loading