Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural NetworksDownload PDF

Sep 28, 2020 (edited Feb 26, 2021)ICLR 2021 PosterReaders: Everyone
  • Keywords: Backdoor Defense, Deep Neural Networks, Neural Attention Distillation
  • Abstract: Deep neural networks (DNNs) are known vulnerable to backdoor attacks, a training time attack that injects a trigger pattern into a small proportion of training data so as to control the model's prediction at the test time. Backdoor attacks are notably dangerous since they do not affect the model's performance on clean examples, yet can fool the model to make the incorrect prediction whenever the trigger pattern appears during testing. In this paper, we propose a novel defense framework Neural Attention Distillation (NAD) to erase backdoor triggers from backdoored DNNs. NAD utilizes a teacher network to guide the finetuning of the backdoored student network on a small clean subset of data such that the intermediate-layer attention of the student network aligns with that of the teacher network. The teacher network can be obtained by an independent finetuning process on the same clean subset. We empirically show, against 6 state-of-the-art backdoor attacks, NAD can effectively erase the backdoor triggers using only 5\% clean training data without causing obvious performance degradation on clean examples. Our code is available at https://github.com/bboylyg/NAD.
  • One-sentence Summary: A simple but effective nerual attention distillation method for backdoor defense.
  • Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
  • Supplementary Material: zip
14 Replies

Loading