Automatic group affect analysis in images via visual attribute and feature networksDownload PDF

28 Feb 2020OpenReview Archive Direct UploadReaders: Everyone
Abstract: This paper proposes a pipeline for automatic group-level affect analysis. A deep neural network-based approach, which leverages on the facial-expression information, scene information and a high-level facial visual attribute information is proposed. A capsule network-based architecture is used to predict the facial expression. Transfer learning is used on Inception-V3 to extract global image-based features which contain scene information. Another network is trained for inferring the facial attributes of the group members. Further, these attributes are pooled at a group-level to train a network for inferring the group-level affect. The facial attribute prediction network, although is simple yet, is effective and generates result comparable to the state-of-the-art methods. Later, model integration is performed from the three channels. The experiments show the effectiveness of the proposed techniques on three ‘in the wild’ databases: Group Affect Database, HAPPEI and UCLA-Protest database.
0 Replies

Loading