Keywords: robustness, subgroup analysis, error analysis, error mitigation, multimodal, slice discovery
TL;DR: LADDER uses LLMs to discover and mitigate biases in models effectively, outperforming traditional methods by leveraging natural language and advanced reasoning without relying on explicit annotations or clustering.
Abstract: Error slice discovery is crucial to diagnose and mitigate model errors. Current clustering or discrete attribute-based slice discovery methods face key limitations: 1) clustering results in incoherent slices, while assigning discrete attributes to slices leads to incomplete coverage of error patterns due to missing or insufficient attributes; 2) these methods lack complex reasoning, preventing them from fully explaining model biases; 3) they fail to integrate \textit{domain knowledge}, limiting their usage in specialized fields \eg radiology. We propose\ladder (\underline{La}nguage-\underline{D}riven \underline{D}iscovery and \underline{E}rror \underline{R}ectification), to address the limitations by: (1) leveraging the flexibility of natural language to address incompleteness, (2) employing LLM's latent \textit{domain knowledge} and advanced reasoning to analyze sentences and derive testable hypotheses directly, identifying biased attributes, and form coherent error slices without clustering. Existing mitigation methods typically address only the worst-performing group, often amplifying errors in other subgroups. In contrast,\ladder generates pseudo attributes from the discovered hypotheses to mitigate errors across all biases without explicit attribute annotations or prior knowledge of bias. Rigorous evaluations on 6 datasets spanning natural and medical images -- comparing 200+ classifiers with diverse architectures, pretraining strategies, and LLMs -- show that\ladder consistently outperforms existing baselines in discovering and mitigating biases. The code is available\footnote{\url{https://github.com/AI-annonymous/ICLR-submission}}.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7962
Loading