A Lightweight Sparse Interaction Network for Time Series Forecasting

Published: 01 Jan 2025, Last Modified: 20 May 2025AAAI 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Recent work shows that linear models can outperform several transformer models in long-term time-series forecasting (TSF). However, instead of explicitly performing temporal interaction through self-attention, linear models implicitly perform it based on stacked MLP structures, which may be insufficient in capturing the complex temporal dependencies and their performance still has potential for improvement. To this end, we propose a Lightweight Sparse Interaction Network (LSINet) for TSF task. Inspired by the sparsity of self-attention, we propose a Multihead Sparse Interaction Mechanism (MSIM). Different from self-attention, MSIM learns the important connections between time steps through sparsity-induced Bernoulli distribution to capture temporal dependencies for TSF. The sparsity is ensured by the proposed self-adaptive regularization loss. Moreover, we observe the shareability of temporal interactions and propose to perform Shared Interactions Learning (SIL) for MSIM to further enhance efficiency and improve convergence. LSINet is a linear model comprising only MLP structures with low overhead and equipped with explicit temporal interaction mechanisms. Extensive experiments on public datasets show that LSINet achieves both higher accuracy and better efficiency than advanced linear models and transformer models in TSF tasks.
Loading