MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Out-of-Distribution Detection, Multimodal Learning
TL;DR: We introduce a novel benchmark MultiOOD for more realistic Multimodal OOD Detection, as well as an Agree-and-Disagree (A2D) algorithm and an NP-Mix outlier synthesis method to improve Multimodal OOD Detection performances.
Abstract: Detecting out-of-distribution (OOD) samples is important for deploying machine learning models in safety-critical applications such as autonomous driving and robot-assisted surgery. Existing research has mainly focused on unimodal scenarios on image data. However, real-world applications are inherently multimodal, which makes it essential to leverage information from multiple modalities to enhance the efficacy of OOD detection. To establish a foundation for more realistic Multimodal OOD Detection, we introduce the first-of-its-kind benchmark, MultiOOD, characterized by diverse dataset sizes and varying modality combinations. We first evaluate existing unimodal OOD detection algorithms on MultiOOD, observing that the mere inclusion of additional modalities yields substantial improvements. This underscores the importance of utilizing multiple modalities for OOD detection. Based on the observation of Modality Prediction Discrepancy between in-distribution (ID) and OOD data, and its strong correlation with OOD performance, we propose the Agree-to-Disagree (A2D) algorithm to encourage such discrepancy during training. Moreover, we introduce a novel outlier synthesis method, NP-Mix, which explores broader feature spaces by leveraging the information from nearest neighbor classes and complements A2D to strengthen OOD detection performance. Extensive experiments on MultiOOD demonstrate that training with A2D and NP-Mix improves existing OOD detection algorithms by a large margin. To support accessibility and reproducibility, our source code and MultiOOD benchmark are available at https://github.com/donghao51/MultiOOD.
Supplementary Material: zip
Primary Area: Safety in machine learning
Submission Number: 2833
Loading