From MLP to NeoMLP: Leveraging Self-Attention for Neural Fields

ICLR 2025 Conference Submission12892 Authors

28 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Neural fields, Self-attention, Auto-decoding, Transformers, Conditional neural fields, Implicit neural representations, Graphs
TL;DR: We propose a method that performs message passing on the graph of MLPs via self-attention and functions as a conditional neural field
Abstract: Neural fields (NeFs) have recently emerged as a state-of-the-art method for encoding spatio-temporal signals of various modalities. Despite the success of NeFs in reconstructing individual signals, their use as representations in downstream tasks, such as classification or segmentation, is hindered by the complexity of the parameter space and its underlying symmetries, in addition to the lack of powerful and scalable conditioning mechanisms. In this work, we draw inspiration from the principles of connectionism to design a new architecture based on MLPs, which we term *Neo*MLP. We start from an MLP, viewed as a graph, and transform it from a multi-partite graph to a _complete graph_ of input, hidden, and output nodes, equipped with _high-dimensional features_. We perform message passing on this graph and employ weight-sharing via _self-attention_ among all the nodes. *Neo*MLP has a built-in mechanism for conditioning through the hidden and output nodes, which function as a set of latent codes, and as such, *Neo*MLP can be used straightforwardly as a conditional neural field. We demonstrate the effectiveness of our method by fitting high-resolution signals, including multi-modal audio-visual data. Furthermore, we fit datasets of neural representations, by learning instance-specific sets of latent codes using a single backbone architecture, and then use them for downstream tasks, outperforming recent state-of-the-art methods.
Supplementary Material: zip
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12892
Loading