AugKD: Ingenious Augmentations Empower Knowledge Distillation for Image Super-Resolution

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Image Super-Resolution, Knowledge Distillation, Model Compression
Abstract: Knowledge distillation (KD) compresses deep neural networks by transferring task-related knowledge from cumbersome pre-trained teacher models to more compact student models. However, vanilla KD for image super-resolution (SR) networks yields only limited improvements due to the inherent nature of SR tasks, where the outputs of teacher models are noisy approximations of high-quality label images. In this work, we show that the potential of vanilla KD has been underestimated and demonstrate that the ingenious application of data augmentation methods can close the gap between it and more complex, well-designed methods. Unlike conventional training processes typically applying image augmentations simultaneously to both low-quality inputs and high-quality labels, we propose AugKD utilizing unpaired data augmentations to 1) generate auxiliary distillation samples and 2) impose label consistency regularization. Comprehensive experiments show that the AugKD significantly outperforms existing state-of-the-art KD methods across a range of SR tasks.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7496
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview