Hearing Health in Home Healthcare: Leveraging LLMs for Illness Scoring and ALMs for Vocal Biomarker Extraction
Keywords: home healthcare monitoring, automatic health assessment, clinical NLP, audio language model, vocal biomarkers, healthcare AI
TL;DR: We leverage LLMs for automated health assessment and explore ALMs for extracting vocal biomarkers in home healthcare settings.
Abstract: The growing demand for home healthcare calls for tools that can support care delivery. In this study, we explore automatic health assessment from voice using real-world home care visit data, leveraging the diverse patient information it contains. First, we utilize Large Language Models (LLMs) to integrate Subjective, Objective, Assessment, and Plan (SOAP) notes derived from unstructured audio transcripts and structured vital signs into a holistic illness score that reflects a patient’s overall health. This compact representation facilitates cross-visit health status comparisons and downstream analysis. Next, we design a multi-stage pre-processing pipeline to extract short speech segments from target speakers in home care recordings for acoustic analysis. We then employ an Audio Language Model (ALM) to produce plain-language descriptions of vocal biomarkers and examine their association with individuals’ health status. Our experimental results benchmark both commercial and open-source LLMs in estimating illness scores, demonstrating their alignment with actual clinical outcomes, and revealing that SOAP notes are substantially more informative than vital signs. Building on the illness scores, we provide the first evidence that ALMs can identify health-related acoustic patterns from home care recordings and present them in a human-readable form. Together, these findings highlight the potential of LLMs and ALMs to harness heterogeneous in-home visit data for better patient monitoring and care.
Submission Number: 21
Loading