Deep learning approach to describe and classify fungi microscopic imagesDownload PDF

Published: 18 Apr 2020, Last Modified: 05 May 2023MIDL 2020Readers: Everyone
Track: short paper
Keywords: mycological diagnosis, microscopic images, deep learning, bag-of-words
Abstract: Preliminary diagnosis of fungal infections can rely on microscopic examination. However, in many cases, it does not allow unambiguous identification of the species by microbiologist due to their visual similarity. Therefore, it is usually necessary to use additional biochemical tests. That involves additional costs and extends the identification process up to 10 days. Such a delay in the implementation of targeted therapy may be grave in consequence as the mortality rate for immunosuppressed patients is high. In this paper, we apply a machine learning approach based on deep neural networks and Fisher vector (advanced bag-of-words method) to classify microscopic images of various fungi species. Our approach has the potential to make the last stage of biochemical identification redundant, shortening the identification process by 2-3 days, and reducing the cost of the diagnosis.
Paper Type: well-validated application
Presentation Upload: zip
Presentation Upload Agreement: I agree that my presentation material (videos and slides) will be made public.
6 Replies