Abstract: Massive machine type communication (mMTC) has attracted new coding schemes optimized for reliable short message transmission. In this paper, a novel deep learning based near-orthogonal superposition (NOS) coding scheme is proposed for reliable transmission of short messages in the additive white Gaussian noise (AWGN) channel for mMTC applications. Similar to recent hyper-dimensional modulation (HDM), the NOS encoder spreads the information bits to multiple near-orthogonal high dimensional vectors to be combined (superimposed) into a single vector for transmission. The NOS decoder first estimates the information vectors and then performs a cyclic redundancy check (CRC)-assisted K-best tree-search algorithm to further reduce the packet error rate. The proposed NOS encoder and decoder are deep neural networks (DNNs) jointly trained as an auto-encoder and decoder pair to learn a new NOS coding scheme with near-orthogonal codewords. Simulation results show the proposed deep learning-based NOS scheme outperforms HDM and Polar code with CRC-aided list decoding for short (32-bit) message transmission.
0 Replies
Loading