Coordinate In and Value Out: Training Flow Transformers in Ambient Space

ICLR 2025 Conference Submission4001 Authors

24 Sept 2024 (modified: 02 Dec 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Generative Model, Flow Matching, Domain Agnostic
TL;DR: A domain agnostic flow matching generative model that acts on ambient space coordinates and values; with strong results on ImageNet-256 and ShapeNet.
Abstract: Flow matching models have emerged as a powerful method for generative modeling on domains like images or videos, and even on unstructured data like 3D point clouds. These models are commonly trained in two stages: first, a data compressor (\ie a variational auto-encoder) is trained, and in a subsequent training stage a flow matching generative model is trained in the low-dimensional latent space of the data compressor. This two stage paradigm adds complexity to the overall training recipe and sets obstacles for unifying models across data domains, as specific data compressors are used for different data modalities. To this end, we introduce Ambient Space Flow Transformers (ASFT), a domain-agnostic approach to learn flow matching transformers in ambient space, sidestepping the requirement of training compressors and simplifying the training process. We introduce a conditionally independent point-wise training objective that enables ASFT to make predictions continuously in coordinate space. Our empirical results demonstrate that using general purpose transformer blocks, ASFT effectively handles different data modalities such as images and 3D point clouds, achieving strong performance in both domains and outperforming comparable approaches. ASFT is a promising step towards domain-agnostic flow matching generative models that can be trivially adopted in different data domains.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4001
Loading