On Reducing Dimensionality of Labeled Data EfficientlyOpen Website

2018 (modified: 05 Nov 2023)PAKDD (3) 2018Readers: Everyone
Abstract: We address the problem of reducing dimensionality for labeled data. Our objective is to achieve better class separation in latent space. Existing nonlinear algorithms rely on pairwise distances between data samples, which are generally infeasible to compute or store in the large data limit. In this paper, we propose a parametric nonlinear algorithm that employs a spherical mixture model in the latent space. The proposed algorithm attains grand efficiency in reducing data dimensionality, because it only requires distances between data points and cluster centers. In our experiments, the proposed algorithm achieves up to 44 times better efficiency while maintaining similar efficacy. In practice, it can be used to speedup k-NN classification or visualize data points with their class structure.
0 Replies

Loading