Generalization error bounds for iterative learning algorithms with bounded updates

15 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: Information theory; generalization bounds; learning algorithm
Abstract: This paper explores the generalization characteristics of iterative learning algorithms with bounded updates for non-convex loss functions, employing information-theoretic techniques. Our key contribution is a novel bound for the generalization error of these algorithms with bounded updates. Our approach introduces two main novelties: 1) we reformulate the mutual information as the uncertainty of updates, providing a new perspective, and 2) instead of using the chaining rule of mutual information, we employ a variance decomposition technique to decompose information across iterations, allowing for a simpler surrogate process. We analyze our generalization bound under various settings and demonstrate improved bounds. To bridge the gap between theory and practice, we also examine the previously observed scaling behavior in large language models. Ultimately, our work takes a further step for developing practical generalization theories.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 255
Loading