Exploring Spatial Representation to Enhance LLM Reasoning in Aerial Vision-Language Navigation

Published: 05 Jun 2026, Last Modified: 05 Oct 2025OpenReview Archive Direct UploadEveryoneCC BY 4.0
Abstract: Aerial Vision-and-Language Navigation (VLN) is a novel task enabling Unmanned Aerial Vehicles (UAVs) to navigate in outdoor environments through natural language instructions and visual cues. However, it remains challenging due to the complex spatial relationships in aerial scenes. In this paper, we propose a training-free, zero-shot framework for aerial VLN tasks, where the large language model (LLM) is leveraged as the agent for action prediction. Specifically, we develop a novel Semantic-Topo-Metric Representation (STMR) to enhance the spatial reasoning capabilities of LLMs. This is achieved by extracting and projecting instruction-related semantic masks onto a top-down map, which presents spatial and topological information about surrounding landmarks and grows during the navigation process. At each step, a local map centered at the UAV is extracted from the growing top-down map, and transformed into a matrix representation with distance metrics, serving as the text prompt to LLM for action prediction in response to the given instruction. Experiments conducted in real and simulation environments have proved the effectiveness and robustness of our method, achieving absolute success rate improvements of 26.8% and 5.8% over current state-of-the-art methods on simple and complex navigation tasks, respectively. The dataset and code will be released soon.
Loading