Robustness of Haar Feature-Based Cascade Classifier for Face Detection Under Presence of Image Distortions

Published: 01 Jan 2019, Last Modified: 25 May 2025IP&C 2019EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In this paper examines effectiveness of HAAR feature-based cascade classifier for face detection in the presence of various image distortions. In the article we have focused on picture distortions that are likely to be met in everyday life, namely blurring, salt and pepper noise, contrast and brightness shifts and “fisheye” type distortion typical for wide-angle lens. In the paper present the mathematical model of the classifier and distortions, the training procedure and finally results of segmentation under various level of distortion. The test dataset is a large publicly available “Labelled Faces in the Wild” (LFW). Results show that Cascade Classifier finds it most difficult to recognize images that contain 70% noise type salt and pepper. The least impact on the effectiveness of the method use of blurred images even though the high parameter of blurring. From the obtained results it appears that the effectiveness of face detection is also affected by the adequate parameters of contrast and brightness.
Loading