AtomSurf: Surface Representation for Learning on Protein Structures

Published: 22 Jan 2025, Last Modified: 12 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: deep learning, protein representation learning; surface methods; geometric deep learning
TL;DR: We propose a state of the art surface encoder for proteins and show it performs deceptively compared to graph methods. The combination of a graph method and this encoder, however, yields state-of-the-art results.
Abstract: While there has been significant progress in evaluating and comparing different representations for learning on protein data, the role of surface-based learning approaches remains not well-understood. In particular, there is a lack of direct and fair benchmark comparison between the best available surface-based learning methods against alternative representations such as graphs. Moreover, the few existing surface-based approaches either use surface information in isolation or, at best, perform global pooling between surface and graph-based architectures. In this work, we fill this gap by first adapting a state-of-the-art surface encoder for protein learning tasks. We then perform a direct and fair comparison of the resulting method against alternative approaches within the Atom3D benchmark, highlighting the limitations of pure surface-based learning. Finally, we propose an integrated approach, which allows learned feature sharing between graphs and surface representations on the level of nodes and vertices \textit{across all layers}. We demonstrate that the resulting architecture achieves state-of-the-art results on all tasks in the Atom3D benchmark, while adhering to the strict benchmark protocol, as well as more broadly on binding site identification and binding pocket classification. Furthermore, we use coarsened surfaces and optimize our approach for efficiency, making our tool competitive in training and inference time with existing techniques. Code can be found online: https://github.com/Vincentx15/atomsurf
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4483
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview