Reinforcement Learning based HVAC Optimization in FactoriesOpen Website

Published: 01 Jan 2020, Last Modified: 28 Jun 2023e-Energy 2020Readers: Everyone
Abstract: Heating, Ventilation and Air Conditioning (HVAC) units are responsible for maintaining the temperature and humidity settings in a building. Studies have shown that HVAC accounts for almost 50% energy consumption in a building and 10% of global electricity usage. HVAC optimization thus has the potential to contribute significantly towards our sustainability goals, reducing energy consumption and CO2 emissions. In this work, we explore ways to optimize the HVAC controls in factories. Unfortunately, this is a complex problem as it requires computing an optimal state considering multiple variable factors, e.g. the occupancy, manufacturing schedule, temperature requirements of operating machines, air flow dynamics within the building, external weather conditions, energy savings, etc. We present a Reinforcement Learning (RL) based energy optimization model that has been applied in our factories. We show that RL is a good fit as it is able to learn and adapt to multi-parameterized system dynamics in real-time. It provides around 25% energy savings on top of the previously used Proportional-Integral-Derivative (PID) controllers.
0 Replies

Loading