Interpretable Node Representation with Attribute Decoding

Published: 03 Dec 2022, Last Modified: 28 Feb 2023Accepted by TMLREveryoneRevisionsBibTeX
Abstract: Variational Graph Autoencoders (VGAEs) are powerful models for unsupervised learning of node representations from graph data. In this work, we make a systematic analysis of modeling node attributes in VGAEs and show that attribute decoding is important for node representation learning. We further propose a new learning model, interpretable NOde Representation with Attribute Decoding (NORAD). The model encodes node representations in an interpretable approach: node representations capture community structures in the graph and the relationship between communities and node attributes. We further propose a rectifying procedure to refine node representations of isolated notes, which improves the quality of the representations of these nodes. Our empirical results demonstrate the advantage of the proposed model when learning graph data in an interpretable approach.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Alessandro_Sperduti1
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
Submission Number: 214