Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity BiasDownload PDF

21 May 2021, 20:49 (edited 09 Nov 2021)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: margin maximization, gradient flow, gradient descent, implicit bias, linearly separable, two-layer neural networks
  • TL;DR: We prove that gradient flow biases two-layer nets to max-margin classifiers on linearly separable data with logistic loss and small initialization, although the margin can be only locally optimal by making simple changes to data assumptions.
  • Abstract: The generalization mystery of overparametrized deep nets has motivated efforts to understand how gradient descent (GD) converges to low-loss solutions that generalize well. Real-life neural networks are initialized from small random values and trained with cross-entropy loss for classification (unlike the "lazy" or "NTK" regime of training where analysis was more successful), and a recent sequence of results (Lyu and Li, 2020; Chizat and Bach, 2020; Ji and Telgarsky, 2020) provide theoretical evidence that GD may converge to the "max-margin" solution with zero loss, which presumably generalizes well. However, the global optimality of margin is proved only in some settings where neural nets are infinitely or exponentially wide. The current paper is able to establish this global optimality for two-layer Leaky ReLU nets trained with gradient flow on linearly separable and symmetric data, regardless of the width. The analysis also gives some theoretical justification for recent empirical findings (Kalimeris et al., 2019) on the so-called simplicity bias of GD towards linear or other "simple" classes of solutions, especially early in training. On the pessimistic side, the paper suggests that such results are fragile. A simple data manipulation can make gradient flow converge to a linear classifier with suboptimal margin.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
9 Replies

Loading