DeLLMa: Decision Making Under Uncertainty with Large Language Models

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 SpotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: large language models, decision theory, decision making under uncertainty
TL;DR: We introduce an inference-time reasoning procedure for reliable decision making under uncertainty with LLMs, drawing upon principles from classical decision theory.
Abstract: The potential of large language models (LLMs) as decision support tools is increasingly being explored in fields such as business, engineering, and medicine, which often face challenging tasks of *decision-making under uncertainty*. In this paper, we show that directly prompting LLMs on these types of decision-making problems can yield poor results, especially as the problem complexity increases. To aid in these tasks, we propose DeLLMa (Decision-making Large Language Model assistant), a framework designed to enhance decision-making accuracy in uncertain environments. DeLLMa involves a multi-step reasoning procedure that integrates recent best practices in scaling *inference-time reasoning*, drawing upon principles from decision theory and utility theory, to provide an accurate and human-auditable decision-making process. We validate our procedure on multiple realistic decision-making environments, demonstrating that DeLLMa can consistently enhance the decision-making performance of leading language models, and achieve up to a 40% increase in accuracy over competing methods. Additionally, we show how performance improves when scaling compute at test time, and carry out human evaluations to benchmark components of DeLLMa.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4817
Loading