Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Stability Analysis; Zeroth-Order Optimization; Black-Box Learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Zeroth-order optimization algorithms are widely used for black-box optimization problems, such as those in machine learning and prompt engineering, where the gradients are approximated using function evaluations. Recently, a generalization result was provided for zeroth-order stochastic gradient descent (SGD) algorithms through stability analysis. However, this result was limited to the vanilla 2-point zeroth-order estimate of Gaussian distribution used in SGD algorithms. To address these limitations, we propose a general proof framework for stability analysis that applies to convex, strongly convex, and non-convex conditions, and yields results for popular zeroth-order optimization algorithms, including SGD, GD, and SVRG, as well as various zeroth-order estimates, such as 1-point and 2-point with different distributions and coordinate estimates. Our general analysis shows that coordinate estimation can lead to tighter generalization bounds for SGD, GD, and SVRG versions of zeroth-order optimization algorithms, due to the smaller expansion brought by coordinate estimates to stability analysis.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning theory
Submission Number: 5497
Loading