Routing-Oblivious Network Tomography with Flow-Based Generative Model

Published: 01 Jan 2024, Last Modified: 13 May 2025INFOCOM 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Given the high cost associated with directly measuring the traffic matrix (TM), researchers have dedicated decades to devising methods for estimating the complete TM from low-cost link loads by solving a set of heavily ill-posed linear equations. Today’s increasingly intricate networks present an even greater challenge: the routing matrix within these equations can no longer be deemed reliable. To address this challenge, we, for the first time, employ a flow-based generative model for TM estimation by establishing an invertible correlation between TM and link loads, oblivious of the routing matrix. We demonstrate that the lost information within the ill-posed equations can be independently segregated from the TM. Our model collaboratively learns the invertible correlations between TM and link loads as well as the distribution of the lost information. As a result, our model can unbiasedly reverse-transform the link loads to the true TM. Our model has undergone extensive experiments on two real-world datasets. Surprisingly, even without knowledge of the routing matrix, it significantly outperforms six representative baselines in deterministic and noisy routing scenarios regarding estimation accuracy and distribution similarity. Particularly, if the actual routing matrix is absent, our model can improve the performance of the best baseline by 41% ∼ 58%.
Loading