Multiple-Source Adaptation Using Variational Rényi Bound Optimization

Published: 01 Jan 2023, Last Modified: 19 May 2025ECML/PKDD (5) 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Multiple Source Adaptation (MSA) is a problem that involves identifying a predictor which minimizes the error for the target domain while utilizing the predictors from the source domains. In practice, the source domains typically exhibit varying probability distributions across the input space and are unknown to the learner. Consequently, accurate probability estimates are essential for effectively addressing the MSA problem. To this end, variation inference is an attractive approach that aims to approximate probability densities. Traditionally, it is done by maximizing a lower bound for the likelihood of the observed data (evidence), i.e. maximizing the Evidence Lower BOund (ELBO). Recently, researchers have proposed optimizing the Variational Rényi bound (VR) instead of ELBO, which can be biased or difficult to approximate due to high variance. To address these issues, we propose a new upper bound called Variational Rényi Log Upper bound (VRLU). Unlike existing VR bounds, the VRLU bound maintains the upper bound property when using the Monte Carlo (MC) approximation. Additionally, we introduce the Variational Rényi Sandwich (VRS) method, which jointly optimizes an upper and a lower bound, resulting in a more accurate density estimate. Following this, we apply the VRS density estimate to the MSA problem. We show, both theoretically and empirically, that using VRS estimators provides tighter error bounds and improved performance, compared to leading MSA methods.
Loading