Abstract: Selective search architectures use resource selection algorithms such as Rank-S or Taily to rank index shards and determine how many to search for a given query. Most prior research evaluated solutions by their ability to improve efficiency without significantly reducing early-precision metrics such as [email protected] and [email protected] This paper recasts selective search as an early stage of a multi-stage retrieval architecture, which makes recall-oriented metrics more appropriate. A new algorithm is presented that predicts the number of shards that must be searched for a given query in order to meet recall-oriented goals. Decoupling shard ranking from deciding how many shards to search clarifies efficiency vs. effectiveness trade-offs, and enables them to be optimized independently. Experiments on two corpora demonstrate the value of this approach.
0 Replies
Loading