Abstract: We present a neural network based shift- reduce CCG parser, the first neural-network based parser for CCG. We also study the im- pact of neural network based tagging mod- els, and greedy versus beam-search parsing, by using a structured neural network model. Our greedy parser obtains a labeled F-score of 83.27%, the best reported result for greedy CCG parsing in the literature (an improve- ment of 2.5% over a perceptron based greedy parser) and is more than three times faster. With a beam, our structured neural network model gives a labeled F-score of 85.57% which is 0.6% better than the perceptron based counterpart.
0 Replies
Loading