Learned Watershed: End-to-End Learning of Seeded SegmentationDownload PDFOpen Website

2017 (modified: 10 Nov 2022)ICCV 2017Readers: Everyone
Abstract: Learned boundary maps are known to outperform handcrafted ones as a basis for the watershed algorithm. We show, for the first time, how to train watershed computation jointly with boundary map prediction. The estimator for the merging priorities is cast as a neural network that is convolutional (over space) and recurrent (over iterations). The latter allows learning of complex shape priors. The method gives the best known seeded segmentation results on the CREMI segmentation challenge.
0 Replies

Loading