TL;DR: We study the problem of learning and optimizing through physical simulations via differentiable programming, using our proposed DiffSim programming language and compiler.
Abstract: We present DiffTaichi, a new differentiable programming language tailored for building high-performance differentiable physical simulators. Based on an imperative programming language, DiffTaichi generates gradients of simulation steps using source code transformations that preserve arithmetic intensity and parallelism. A light-weight tape is used to record the whole simulation program structure and replay the gradient kernels in a reversed order, for end-to-end backpropagation.
We demonstrate the performance and productivity of our language in gradient-based learning and optimization tasks on 10 different physical simulators. For example, a differentiable elastic object simulator written in our language is 4.2x shorter than the hand-engineered CUDA version yet runs as fast, and is 188x faster than the TensorFlow implementation.
Using our differentiable programs, neural network controllers are typically optimized within only tens of iterations.
Code: https://github.com/yuanming-hu/difftaichi
Keywords: Differentiable programming, robotics, optimal control, physical simulation, machine learning system
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/arxiv:1910.00935/code)
Original Pdf: pdf
8 Replies
Loading