Detecting Change in Seasonal Pattern via Autoencoder and Temporal RegularizationDownload PDF

25 Sep 2019 (modified: 24 Dec 2019)ICLR 2020 Conference Blind SubmissionReaders: Everyone
  • Original Pdf: pdf
  • Abstract: Change-point detection problem consists of discovering abrupt property changes in the generation process of time-series. Most state-of-the-art models are optimizing the power of a kernel two-sample test, with only a few assumptions on the distribution of the data. Unfortunately, because they presume the samples are distributed i.i.d, they are not able to use information about the seasonality of a time-series. In this paper, we present a novel approach - ATR-CSPD allowing the detection of changes in the seasonal pattern of a time-series. Our method uses an autoencoder together with a temporal regularization, to learn the pattern of each seasonal cycle. Using low dimensional representation of the seasonal patterns, it is possible to accurately and efficiently estimate the existence of a change point using a clustering algorithm. Through experiments on artificial and real-world data sets, we demonstrate the usefulness of the proposed method for several applications.
  • Code:
  • Keywords: Autoencoder, Change Point Detection, Timeseries
5 Replies