Universal Agent for Disentangling Environments and TasksDownload PDF

15 Feb 2018 (modified: 03 Mar 2018)ICLR 2018 Conference Blind SubmissionReaders: Everyone
Abstract: Recent state-of-the-art reinforcement learning algorithms are trained under the goal of excelling in one specific task. Hence, both environment and task specific knowledge are entangled into one framework. However, there are often scenarios where the environment (e.g. the physical world) is fixed while only the target task changes. Hence, borrowing the idea from hierarchical reinforcement learning, we propose a framework that disentangles task and environment specific knowledge by separating them into two units. The environment-specific unit handles how to move from one state to the target state; and the task-specific unit plans for the next target state given a specific task. The extensive results in simulators indicate that our method can efficiently separate and learn two independent units, and also adapt to a new task more efficiently than the state-of-the-art methods.
TL;DR: We propose a DRL framework that disentangles task and environment specific knowledge.
Keywords: reinforcement learning, transfer learning
4 Replies