Sentiment Analysis and Summarization of Twitter Data

Published: 01 Jan 2013, Last Modified: 19 Apr 2024CSE 2013EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Sentiment Analysis (SA) and summarization has recently become the focus of many researchers, because analysis of online text is beneficial and demanded in many different applications. One such application is product-based sentiment summarization of multi-documents with the purpose of informing users about pros and cons of various products. This paper introduces a novel solution to target-oriented (i.e. aspect-based) sentiment summarization and SA of short informal texts with a main focus on Twitter posts known as "tweets". We compare different algorithms and methods for SA polarity detection and sentiment summarization. We show that our hybrid polarity detection system not only outperforms the unigram state-of-the-art baseline, but also could be an advantage over other methods when used as a part of a sentiment summarization system. Additionally, we illustrate that our SA and summarization system exhibits a high performance with various useful functionalities and features.
Loading