Eagle: Refining Congestion Control by Learning from the ExpertsDownload PDFOpen Website

2020 (modified: 07 Mar 2022)INFOCOM 2020Readers: Everyone
Abstract: Traditional congestion control algorithms were designed with a hardwired heuristic mapping between packet- level events and predefined control actions in response to these events, and may fail to satisfy all the desirable performance goals as a result. In this paper, we seek to reconsider these fundamental goals in congestion control, and propose Eagle, a new congestion control algorithm to refine existing heuristics. Eagle takes advantage of expert knowledge from an existing algorithm, and uses deep reinforcement learning (DRL) to train a generalized model with the hope of learning from an expert. Learning by trial-and-error may not be as efficient as imitating a teacher; by the same token, DRL alone is not enough to guarantee good performance. In Eagle, we seek help from an expert congestion control algorithm, BBR, to help us train a long-short term memory (LSTM) neural network in the DRL agent, with the hope of making decisions that can be as good as or even better than the expert. With an extensive array of experiments, we discovered that Eagle is able to match and even outperform the performance of its teacher, and outperformed a large number of recent congestion control algorithms by a considerable margin.
0 Replies

Loading