Track: Full Paper
Abstract: Recent approaches in machine learning often solve a task using a composition of multiple models or agentic architectures.
When targeting a composed system with adversarial attacks, it might not be computationally or informationally feasible to train an end-to-end proxy model or a proxy model for every component of the system.
We introduce a method to craft an adversarial attack against the overall multi-model system when we only have a proxy model for the final black-box model, and when the transformation applied by the initial models can
make the adversarial perturbations ineffective.
Current methods handle this by applying many copies of the first model/transformation to an input and then re-use a standard adversarial attack by averaging gradients, or learning a proxy model for both stages.
To our knowledge, this is the first attack specifically designed for this threat model and our method has a substantially higher attack success rate (80\% vs 25\%) and contains 9.4\% smaller perturbations (MSE) compared to prior state-of-the-art methods.
Our experiments focus on a supervised image pipeline, but we are confident the attack will generalize to other multi-model settings [e.g. a mix of open/closed source foundation models], or agentic systems.
Submission Number: 10
Loading