Empirical Bernstein in smooth Banach spaces

Published: 01 Jan 2026, Last Modified: 28 Jan 2026Annals of Applied ProbabilityEveryoneCC BY 4.0
Abstract: Existing concentration bounds for bounded vector-valued random variables include extensions of the scalar Hoeffding and Bernstein inequalities. While the latter is typically tighter, it requires knowing a bound on the variance of the random variables. We derive a new vector-valued empirical Bernstein inequality, which makes use of an empirical estimator of the variance instead of the true variance. The bound holds in 2-smooth separable Banach spaces, which include finite dimensional Euclidean spaces and separable Hilbert spaces. The resulting confidence sets are instantiated for both the batch setting (where the sample size is fixed) and the sequential setting (where the sample size is a stopping time). The confidence set width asymptotically exactly matches that achieved by Bernstein in the leading term.
Loading