Keywords: AI for Public Health, large language models, heterogeneous time-series classification, multi-label classification
TL;DR: We develop a novel method for longitudinal human behavior modeling that leverages LLMs in a boosting framework to perform multi-label classification of multiple health or well-being outcomes.
Abstract: Longitudinal human behavior modeling has received increasing attention over the years due to its widespread applications to patient monitoring, dietary and lifestyle recommendations, and just-in-time intervention for at-risk individuals (e.g., problematic drug users and struggling students), to name a few. Using in-the-moment health data collected via ubiquitous devices (e.g., smartphones and smartwatches), this multidisciplinary field focuses on developing predictive models for certain health or well-being outcomes (e.g., depression and stress) in the short future given the time series of individual behaviors (e.g., resting heart rate, sleep quality, and current feelings). Yet, most existing models on these data, which we refer to as ubiquitous health data, do not achieve adequate accuracy. The latest works that yielded promising results have yet to consider realistic aspects of ubiquitous health data (e.g., containing features of different types and high rate of missing values) and the consumption of various resources (e.g., computing power, time, and cost). Given these two shortcomings, it is dubious whether these studies could translate to realistic settings. In this paper, we propose MuHBoost, a multi-label boosting method for addressing these shortcomings, by leveraging advanced methods in large language model (LLM) prompting and multi-label classification (MLC) to jointly predict multiple health or well-being outcomes. Because LLMs can hallucinate when tasked with answering multiple questions simultaneously, we also develop two variants of MuHBoost that alleviate this issue and thereby enhance its predictive performance. We conduct extensive experiments to evaluate MuHBoost and its variants on 13 health and well-being prediction tasks defined from four realistic ubiquitous health datasets. Our results show that our three developed methods outperform all considered baselines across three standard MLC metrics, demonstrating their effectiveness while ensuring resource efficiency.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7240
Loading