FISTAPruner: Layer-wise Post-training Pruning for Large Language Models

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: large language models, post-training pruning
Abstract: Pruning is a critical strategy for compressing trained large language models (LLMs), aiming at substantial memory conservation and computational acceleration without compromising performance. However, existing pruning methods typically necessitate inefficient retraining for billion-scale LLMs or rely on heuristically designed metrics to determine pruning masks, leading to performance degradation. This paper presents, for the first time, a LASSO-like convex optimization model crafted to induce sparsity in LLMs. By leveraging the FISTA, we introduce FISTAPruner, a novel method that includes a cumulative error elimination mechanism within decoder layers and supports parallel pruning for unstructured pruning. Additionally, we extend this method to 2:4 semi-structured pruning. We comprehensively evaluate FISTAPruner on models such as OPT and LLaMA variants with 125M to 70B parameters under unstructured and 2:4 semi-structured sparsity, showcasing superior performance over existing methods across various language benchmarks. Notably, it can remove 50% of the model parameters for LLaMA-3-70B while retaining 98.6% and 95.6% of the zero-shot task performance under these two sparsity patterns, respectively.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8547
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview