Multiple Non-Redundant Spectral Clustering ViewsDownload PDF

2010 (modified: 16 Jul 2019)ICML 2010Readers: Everyone
Abstract: Many clustering algorithms only find one clustering solution. However, data can often be grouped and interpreted in many different ways. This is particularly true in the high-dimensional setting where different subspaces reveal different possible groupings of the data. Instead of committing to one clustering solution, here we introduce a novel method that can provide several non-redundant clustering solutions to the user. Our approach simultaneously learns non-redundant subspaces that provide multiple views and finds a clustering solution in each view. We achieve this by augmenting a spectral clustering objective function to incorporate dimensionality reduction and multiple views and to penalize for redundancy between the views.
0 Replies

Loading