Deep Feature Interpolation for Image Content ChangesDownload PDFOpen Website

2017 (modified: 10 Nov 2022)CVPR 2017Readers: Everyone
Abstract: We propose Deep Feature Interpolation (DFI), a new datadriven baseline for automatic high-resolution image transformation. As the name suggests, DFI relies only on simple linear interpolation of deep convolutional features from pre-trained convnets. We show that despite its simplicity, DFI can perform high-level semantic transformations like “make older/younger”, “make bespectacled”, “add smile”, among others, surprisingly well-sometimes even matching or outperforming the state-of-the-art. This is particularly unexpected as DFI requires no specialized network architecture or even any deep network to be trained for these tasks. DFI therefore can be used as a new baseline to evaluate more complex algorithms and provides a practical answer to the question of which image transformation tasks are still challenging after the advent of deep learning.
0 Replies

Loading