Learning to Progressively Plan

Anonymous

Sep 27, 2018 ICLR 2019 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: For problem solving, making reactive decisions based on problem description is fast but inaccurate, while search-based planning using heuristics gives better solutions but could be exponentially slow. In this paper, we propose a new approach that improves an existing solution by iteratively picking and rewriting its local components until convergence. The rewriting policy employs a neural network trained with reinforcement learning. We evaluate our approach in two domains: job scheduling and expression simplification. Compared to common effective heuristics, baseline deep models and search algorithms, our approach efficiently gives solutions with higher quality.
0 Replies

Loading