PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications

Tim Salimans, Andrej Karpathy, Xi Chen, Diederik P. Kingma

Nov 05, 2016 (modified: Feb 07, 2017) ICLR 2017 conference submission readers: everyone
  • Abstract: PixelCNNs are a recently proposed class of powerful generative models with tractable likelihood. Here we discuss our implementation of PixelCNNs which we make available at https://github.com/openai/pixel-cnn. Our implementation contains a number of modifications to the original model that both simplify its structure and improve its performance. 1) We use a discretized logistic mixture likelihood on the pixels, rather than a 256-way softmax, which we find to speed up training. 2) We condition on whole pixels, rather than R/G/B sub-pixels, simplifying the model structure. 3) We use downsampling to efficiently capture structure at multiple resolutions. 4) We introduce additional short-cut connections to further speed up optimization. 5) We regularize the model using dropout. Finally, we present state-of-the-art log likelihood results on CIFAR-10 to demonstrate the usefulness of these modifications.
  • TL;DR: Adding discretized logistic mixture Likelihood and other modifications to PixelCNN improves performance.
  • Conflicts: openai.com