PAC Confidence Sets for Deep Neural Networks via Calibrated PredictionDownload PDF

Sep 25, 2019 (edited Mar 11, 2020)ICLR 2020 Conference Blind SubmissionReaders: Everyone
  • Original Pdf: pdf
  • Abstract: We propose an algorithm combining calibrated prediction and generalization bounds from learning theory to construct confidence sets for deep neural networks with PAC guarantees---i.e., the confidence set for a given input contains the true label with high probability. We demonstrate how our approach can be used to construct PAC confidence sets on ResNet for ImageNet, a visual object tracking model, and a dynamics model for the half-cheetah reinforcement learning problem.
  • Keywords: PAC, confidence sets, classification, regression, reinforcement learning
  • Code: https://github.com/sangdon/PAC-confidence-set
10 Replies

Loading