CellPLM: Pre-training of Cell Language Model Beyond Single Cells

Published: 16 Jan 2024, Last Modified: 15 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Single-cell analysis, Pretrained models, AI for science
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: The current state-of-the-art single-cell pre-trained models are greatly inspired by the success of large language models. They trained transformers by treating genes as tokens and cells as sentences. However, three fundamental differences between single-cell data and natural language data are overlooked: (1) scRNA-seq data are presented as bag-of-genes instead of sequences of RNAs; (2) Cell-cell relations are more intricate and important than inter-sentence relations; and (3) The quantity of single-cell data is considerably inferior to text data, and they are very noisy. In light of these characteristics, we propose a new pre-trained model, $\textit{CellPLM}$, which takes cells as tokens and tissues as sentences. In addition, we leverage spatially-resolved transcriptomic data in pre-training to facilitate learning cell-cell relationships and introduce a Gaussian prior distribution as an additional inductive bias to overcome data limitations. $\textit{CellPLM}$ is the first single-cell pre-trained transformer that encodes cell-cell relations and it consistently outperforms existing pre-trained and non-pre-trained models in diverse downstream tasks, with 100 times higher inference speed on generating cell embeddings than previous pre-trained models.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 3984
Loading