Flocking in complex environments - Attention trade-offs in collective information processing

Published: 01 Jan 2020, Last Modified: 07 May 2025PLoS Comput. Biol. 2020EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Author summary Understanding how consensus is reached and information is processed within a collective is fundamental to many aspects of social dynamics in animals and humans. It is widely accepted that high connectivity among individuals facilitates group consensus, and being in a group provides benefits to individuals through social information about the environment provided by other group members. We show that this does not hold for collectives in complex environments: Limited attention capacity, that severely reduces connectivity among individuals, is highly beneficial for global coordination. However, this comes at a price: Collectives outperform isolated individuals in responding to the environment only at sufficiently high attention capacities, where global coordination breaks down. Thus, we demonstrate a fundamental trade-off in collective behavior between social coordination and responsiveness to environmental cues. Our work demonstrates the importance of sensory and cognitive limitations for the emergence and function of animal collectives, and poses fundamental questions about co-evolution of social behavior and individual attention capacity. The observed trade-off in collective information processing has implications for human social systems and for the design of robotic swarms operating in complex environments.
Loading