Invariant Risk MinimizationDownload PDFOpen Website

2019 (modified: 16 May 2022)CoRR 2019Readers: Everyone
Abstract: We introduce Invariant Risk Minimization (IRM), a learning paradigm to estimate invariant correlations across multiple training distributions. To achieve this goal, IRM learns a data representation such that the optimal classifier, on top of that data representation, matches for all training distributions. Through theory and experiments, we show how the invariances learned by IRM relate to the causal structures governing the data and enable out-of-distribution generalization.
0 Replies